Why don't you just use the definition? $$ q(e_1)=e_1\cdot Ae_1=e_1\cdot\begin{pmatrix}1\\\4\end{pmatrix}=1 $$ and $$ q(e_2)=e_2\cdot Ae_2=e_2\cdot\begin{pmatrix}4\\\\-4\end{pmatrix}=-4. $$ You don't need the eigenvalues and eigenvectors of $A$ to compute the value of the quadratic form at some points.
Otherwise you computed $$ q(x,y)=x^2+8xy-4y^2. $$ You can also use this to compute $$ q(e_1)=q(1,0)=1^2+8\cdot1\cdot0-4\cdot 0^2=1 $$ and $$ q(e_2)=q(0,1)=0^2+8\cdot 0\cdot 1-4\cdot 1^2=-4. $$