Note that $$\left|\frac{2}{\pi} \int_0^\epsilon \frac{f(x)}{\sqrt{\epsilon^2-x^2}} \, \mathrm{d}x-f(0)\right|=\frac{2}{\pi} \left|\int_0^\epsilon \frac{f(x)-f(0)}{\sqrt{\epsilon^2-x^2}} \, \mathrm{d}x\right|\leq \frac{2}{\pi} \int_0^\epsilon \frac{|f(x)-f(0)|}{\sqrt{\epsilon^2-x^2}} \, \mathrm{d}x.$$ Then by the continuity of $f$ at $0$ (we need this property otherwise it is not true), for $\epsilon'>0$ there is $\delta>0$ such that $|f(x)-f(0)|<\epsilon'$ for $0\leq x<\delta$. Hence for $0<\epsilon<\delta$, $$\left|\frac{2}{\pi} \int_0^\epsilon \frac{f(x)}{\sqrt{\epsilon^2-x^2}} \, \mathrm{d}x-f(0)\right|\leq \frac{2}{\pi} \int_0^\epsilon \frac{\epsilon'}{\sqrt{\epsilon^2-x^2}} \, \mathrm{d}x=\epsilon'$$ that is $$\lim_{\epsilon\to 0} \, \frac{2}{\pi} \int_0^\epsilon \frac{f(x)}{\sqrt{\epsilon^2-x^2}} \, \mathrm{d}x = f(0).$$