It holds that $|f(x)| \leq \max_{x \in [a,b]} f(x):=||f||_{\max}, \forall x \in [a,b]$.
Thus:
$$||f||_1= \int_a^b |f(x)| dx \leq \int_a^b ||f||_{\max} dx= ||f||_{\max} \int_a^b 1 dx=(b-a) ||f||_{\max}$$
It holds that $|f(x)| \leq \max_{x \in [a,b]} f(x):=||f||_{\max}, \forall x \in [a,b]$.
Thus:
$$||f||_1= \int_a^b |f(x)| dx \leq \int_a^b ||f||_{\max} dx= ||f||_{\max} \int_a^b 1 dx=(b-a) ||f||_{\max}$$