Just calculate: $\int_I{\int_I{e^{-tx}\frac{t^\alpha}{1+t}dx}dt} = \int_I{\frac{t^\alpha}{1+t}\int_I{e^{-tx}dx}dt} = \int_I{\frac{t^\alpha}{1+t}\frac{1}{t}dt} < \int_{0}^{1}{t^{\alpha-1}dt} + \int_{1}^{\infty}{t^{\alpha-2}dt} = \frac{1}{\alpha} + \frac{1}{1-\alpha} < \infty. $ Note that I used inequality $1+t>1, 1+t>t$ respectively for two divided interval $(0,1)$ and $(1,\infty)$ for $t.$