The Tate module of a product $A\times B$ of abelian varieties over $k$ is naturally isomorphic, as a $G_k$-module, to $T_\ell A\times T_\ell B$. This follows directly from the universal property of a direct product: $$ (A\times B)(k^\text{sep}) \simeq A(k^\text{sep})\times B(k^\text{sep}) \text{.} $$