$CDE$ is an isosceles triangle, hence $\widehat{EDC}=\frac{\pi-C}{2}$. In a similar way, $\widehat{DBF}=\frac{\pi-B}{2}$, hence: $$ \widehat{FDE}=\pi-\frac{\pi-B}{2}-\frac{\pi-C}{2}=\frac{B+C}{2}$$ and since $B+C<\pi$, $\widehat{FDE}$ is an acute angle. The same applies to $\widehat{FED}$ and $\widehat{DFE}$.