Yes, the supremum of a sequence $(a_n)_{n\in\mathbb N}$ is $\sup\\{a_n\,|\,n\in\mathbb{N}\\}$. More generally, the supremum of a real function with doain $X$ is $\sup\\{f(x)\,|\,x\in X\\}$.
Yes, the supremum of a sequence $(a_n)_{n\in\mathbb N}$ is $\sup\\{a_n\,|\,n\in\mathbb{N}\\}$. More generally, the supremum of a real function with doain $X$ is $\sup\\{f(x)\,|\,x\in X\\}$.