You can see the correct answer by writing the sums explicitly: $$\begin{align} \sum_{r=1}^n(ar+b) &= (a1+b) + (a2+b) + \dots + (an+b)\\\ &=(a1 + a2 + \dots + an) + (b + b + \dots + b)\\\ &=\sum_{r=1}^nar+\sum_{r=1}^nb \end{align}$$
You can see the correct answer by writing the sums explicitly: $$\begin{align} \sum_{r=1}^n(ar+b) &= (a1+b) + (a2+b) + \dots + (an+b)\\\ &=(a1 + a2 + \dots + an) + (b + b + \dots + b)\\\ &=\sum_{r=1}^nar+\sum_{r=1}^nb \end{align}$$