Separate the terms. Then you get:
$$ Cov(u_{it}-u_{it-1}, u_{it-1}-u_{it-2})=Cov(u_{it}, u_{it-1})-Cov(u_{it}, u_{it-2})-Cov(u_{it-1}, u_{it-1})+Cov(u_{it-1}, u_{it-2}) $$ The first term is 0 by assumption. So are the second and fourth ones as well. The third one is $$ -Cov(u_{it-1}, u_{it-1})=-V(u_{it-1})=-\sigma^2. $$
So then $$ Corr(u_{it}-u_{it-1}, u_{it-1}-u_{it-2})=\frac{Cov(u_{it}-u_{it-1}, u_{it-1}-u_{it-2})}{\sqrt{V(u_{it}-u_{it-1})V(u_{it-1}-u_{it-2})}}=-\frac{\sigma^2}{\sqrt{4(\sigma^2)^2}}\\\ =-\frac{1}{2}. $$