If $(X_i)_i$ is a sequence of Bernoulli random variables then the number of successes is $S:=\sum_{i=1}^{\infty}X_i$.
Then by linearity of expectation: $$\mathbb ES=\sum_{i=1}^{\infty}\mathbb EX_i=\sum_{i=1}^{\infty}p_i$$
where $p_i:=P(X_i=1)$.
Does this help (I did not read the article)?