Note that $$ \frac{1-\cos(x)}{x^2(1+\sqrt{\cos x})}=\frac{1-\cos^2 x}{x^2(1+\sqrt{\cos x})(1+\cos x)}=\left(\frac{\sin x}{x}\right)^2\frac{1}{(1+\sqrt{\cos x})(1+\cos x)} $$ then you can use $\lim_{x\to 0}\sin(x)/x=1$. Arguments for this latter fact can be seen here. Some of them do not employ L'Hopital's Rule.