Artificial intelligent assistant

convergence of a integral using comparation > analyze the comparison criterion if the integral converges or not > > $\int\limits_{2}^{+\infty}\frac{\cos x}{2+e^{x^3}}dx$ attempt i used the fact that $-\frac{1}{2+e^{x^3}}\le\frac{\cos x}{2+e^{x^3}}\le\frac{1}{2+e^{x^3}}$ to get that $-\int\limits_{2}^{+\infty}\frac{1}{2+e^{x^3}}dx\le\int\limits_{2}^{+\infty}\frac{\cos x}{2+e^{x^3}}dx\le \int\limits_{2}^{+\infty}\frac{1}{2+e^{x^3}}dx$ then for $x>1$ we have that $e^{x^3}>e^{x}\Rightarrow2+e^{x^3}>e^x$ and then $\frac{1}{2+e^{x^3}}<\frac{1}{e^x}=e^{-x}$ and then $\int\limits_{2}^{+\infty}\frac{1}{2+e^{x^3}}dx<\int\limits_{2}^{+\infty}e^{-x}dx=-e^{-x}\bigg|_{2}^{+\infty}=e^{-2}$ wich mean that $\int\limits_{2}^{+\infty}\frac{\cos x}{2+e^{x^3}}dx$ converge did my work are correct? has a better way to conclude this?

We have that $\int_{0}^{y}\cos x\,dx $ is bounded and $\frac{1}{2+e^{x^3}}$ is a positive decreasing function whose limit when $x\to +\infty$ is zero, hence the integral is converging by Dirichlet's criterion, for instance.

xcX3v84RxoQ-4GxG32940ukFUIEgYdPy 32cc4fdbbaa89f6638d42afaf61a5eee