Yes, use the Leibniz Rule:
\begin{align} {d\over du}\int_{g(0)}^{g(u)} f(t,u)\,dt&=\int_{g(0)}^{g(u)} {\partial f\over \partial u}(g(u),u)\,dt+f(g(u),u)g'(u)-f(g(0),u){d\over du}[g(0)]\\\ &=\int_{g(0)}^{g(u)} {\partial f\over \partial u}(g(u),u)\,dt+f(g(u),u)g'(u). \end{align}