HINT. $$e^{\frac{\ln x}{\sin^{-1} (1/x)}}=e^{-\frac{\ln t}{\sin^{-1} t}}\underbrace=_H e^{\frac{\sin t}{t}\frac{\sin t}{\cos t}}\rightarrow 1 \ \ \ (t\rightarrow 0)$$
HINT. $$e^{\frac{\ln x}{\sin^{-1} (1/x)}}=e^{-\frac{\ln t}{\sin^{-1} t}}\underbrace=_H e^{\frac{\sin t}{t}\frac{\sin t}{\cos t}}\rightarrow 1 \ \ \ (t\rightarrow 0)$$