Hint. Note that along the LOWER semicircle of radius $R>0$, $z=R(\cos(t)+i\sin(t))$ with $t\in [\pi,2\pi]$ and $$|\exp(-2iz)|=|\exp(-2iR(\cos(t)+i\sin(t))|=\exp(2R\sin(t))\leq 1.$$ Now are you able to show that the integral along the semicircle part of the path of integration is negligible?
P.S. By considering the LOWER semicircle, you will also get the correct result of the integral $$\int\limits_{-\infty}^{+\infty}\frac{e^{-2xi}}{x^2+4}dx=-2\pi i\mbox{Res}\left(\frac{e^{-2iz}}{z^2+4},-2i\right)= -2\pi i\cdot \frac{e^{-2i(-2i)}}{2(-2i)}=\frac{\pi e^{-4}}{2}.$$