With $\lnot$ as primitive, we have to use $\text {L-} \lnot$ followed by : $\text {R-} \lnot$:
\begin{align} {\cfrac{{\cfrac{\Gamma \to \Delta, A }{\lnot A, \Gamma \to \Delta} \text {L-} \lnot}}{\Gamma \to \Delta, \lnot \lnot A }\text {R-} \lnot} \end{align}
With $\lnot A$ defined as $A \supset \bot$, we have to use $\text {L-} \supset$ followed by : $\text {R-} \supset$:
\begin{align} {\cfrac{\cfrac{{\cfrac{\Gamma \to \Delta, A \quad \quad \bot, \Gamma \to \Delta }{A \supset \bot, \Gamma \to \Delta} \text {L-} \supset}}{A \supset \bot, \Gamma \to \Delta, \bot}\text {R-W}}{\Gamma \to \Delta, (A \supset \bot) \supset \bot }\text {R-} \supset} \end{align}
_Note_ : the top-right sequent is:
\begin{align} {\cfrac{ }{\bot, \Gamma \to \Delta} \text {L-} \bot} \end{align}