This holds for any norm induced by an inner product. This follows from $$\|QA\|=\sqrt{(QA,QA)}=\sqrt{(Q^TQA,A)}=\sqrt{(A,A)} = \|A\|$$
With $Q$ an orthonormal matrix, i.e., $Q^{-1}=Q^T$.
This holds for any norm induced by an inner product. This follows from $$\|QA\|=\sqrt{(QA,QA)}=\sqrt{(Q^TQA,A)}=\sqrt{(A,A)} = \|A\|$$
With $Q$ an orthonormal matrix, i.e., $Q^{-1}=Q^T$.