For starters, do note that
$$\text{NAND} (p_1, p_2) = \
eg (p_1 \land p_2)$$
Hence $\text{NAND} (p, p) = \
eg (p \land p) \equiv \
eg p$ because $p \land p \equiv p$. Therefore,
$$ \text{NAND} (\text{NAND} (p, p), \text{NAND} (q, q)) = \text{NAND} (\
eg p, \
eg q) = \
eg (\
eg p \land \
eg q) \equiv \
eg\
eg p \lor \
eg\
eg q \equiv p \lor q$$
where I used one of De Morgan's laws and elimination of the double negation (i.e., $\
eg \
eg p \equiv p$).