$\
ewcommand{\Z}{\mathbb{Z}}$Consider the Prüfer group $M = Z(2^{\infty})$. It is an abelian group, thus a $\Z$-module.
It is also a module over $R = 2 \Z$. If $x \
e 0$ is the unique involution of $M$, then $R x = 0$.
$\
ewcommand{\Z}{\mathbb{Z}}$Consider the Prüfer group $M = Z(2^{\infty})$. It is an abelian group, thus a $\Z$-module.
It is also a module over $R = 2 \Z$. If $x \
e 0$ is the unique involution of $M$, then $R x = 0$.