\begin{align} \\#(A\cap (B\cup C)) &= \\#((A\cap B)\cup (A\cap C))\\\ &=\\#(A\cap B)+\\#(A\cap C)-\\#(A\cap B\cap C)\\\ &=11+12-5=18. \end{align} Note that $A$ cannot be fewer than $18$ since $A\cap(B\cup C)\subseteq A$, thus $\\#(A)\geq18$.
Now, if we can find an example, where $\\#(A)=18$, we'll have minimized the cardinality of $A$. For such an example, let $A=\\{1,\ldots,18\\}$, $B=\\{1,\ldots,11\\}$, and $C=\\{7,\ldots,18\\}$.