$E(X|Y=k)$ gives you the expected value of $X$ when you know that the number of days of storm is $k$. Then, since $X\sim Bin(k,q)$ for $k$th day, you have $E(X|Y=k)=\sum_{i=1}^k i q$. Thus $E(X|Y)=\sum_{k=1}^Y kq$. Thus, $$E(X)=E\left(\sum_{k=1}^Y kq\right)=\sum_{j=1}^n \binom{n}{j}p^j (1-p)^{n-j}\sum_{k=1}^j kq=q\sum_{j=1}^n \binom{n}{j}p^j (1-p)^{n-j} \frac{j(j+1)}{2}=\frac{q}{2}\left(E Y^2+E Y\right)=\frac{q}{2}(np(1-p)+2np)=\frac{npq}{2}(3-p)$$