Artificial intelligent assistant

Payoff table for a top (short) straddle Is the following table for a short (top) straddle correct? $K\equiv \text{Strike price}$ $S_T\equiv \text{Stock price at time T}$ \begin{array}{c|c|c|c} \text{Range of} & \text{Payoff} & \text{Payoff} & \text{Total}\\\ \text{stock price} & \text{from call} & \text{from put} & \text{payoff}\\\ \hline S_T\le K & S_T-K & 0 & S_T-K\\\ S_T\gt K & 0 & K-S_T & K-S_T \end{array}

No, you lose $S_T-K$ on the short call when $S_T >K$ and lose $K-S_T$ on the short put when $S_T

xcX3v84RxoQ-4GxG32940ukFUIEgYdPy 2dfb2f1684bc130e995dc26cef539866