## Part a
$$\begin{array}{rcl} \lambda x^T y &=& (x^T S^T) y \\\ &=& (x^T S) y \\\ &=& x^T (S y) \\\ &=& x^T (\mu y) \\\ \end{array}$$
Therefore $(\lambda-\mu)(x^T y) = 0$
## Part b
$$\begin{array}{rcl} S x &=& \lambda x \\\ S^2 x &=& \lambda^2 x \\\ S^3 x &=& \lambda^3 x \\\ S^4 x &=& \lambda^4 x \\\ S^4 x + S^2 x + S x &=& \lambda^4 x + \lambda^2 x + \lambda x \\\ (S^4 + S^2 + S) x &=& (\lambda^4 + \lambda^2 + \lambda) x \\\ \end{array}$$