For simplicity I'll assume that $\alpha = 1$. You want to evaluate $$ x^\star = \arg \min_x \quad I(x) + \frac12 \|x\|^2 + \frac12 \|x - z \|^2 $$ where $I$ is the indicator function of the nonnegative orthant. We'll combine the two quadratic terms into a single quadratic term by completing the square. Notice that \begin{align} &\frac12 \|x \|^2 +\frac{1}{2} \|x - z \|^2 \\\ &= \frac12 \|x\|^2 + \frac12 \|x\|^2 - \langle x,z \rangle + \frac12\|z\|^2 \\\ &= \|x\|^2 - \langle x,z \rangle + \frac12 \| z\|^2 \\\ &= \underbrace{\|x\|^2 - 2 \langle x,z/2\rangle + \|z/2\|^2}_{\text{perfect square}} - \|z/2\|^2 + \frac12 \|z\|^2\\\ &= \left\|x - \frac{z}{2} \right\|^2 + \text{terms that do not depend on $x$}. \end{align} Therefore, $$ x^\star = \arg \min_x \quad I(x) + \|x - \frac{z}{2} \|^2. $$ Computing $x^\star$ has now been reduced to evaluating the prox-operator of $I$.