$H$ is an vectoriel space
$L$ is an afine space which direction is $H$
If $L \
eq \emptyset$ there is a solution $x$ to $Al=b$ that means that $L=(l \text{ such as }l=x+h \text{ for } h\in H)$
There you can see that $|H|=|L|$
Without affine space :
We suppose that $L \
eq \emptyset$ so there is a solution $x$ to $Al=b$
For each $h \in H$, $A(x+h)=Ax + Ah = b + 0 = b$ so $x+h\in L$. Thus $|H| \le |L|$
For each $l \in L$, $b=Al=A(l-x+x)=A(l-x)+Ax=A(l+x)+b$ so $A(l+x)=0$ so $l+x\in H$. Thus $|L| \le |H|$
In conclusion $|L|=|H|$