Rather this:
> ...then there exists $x$ in $W$ and $t\geqslant0$ such that $\varphi(t,x)$ is either undefined or not in $V$.
Recall that for every proposition $P$, the negation of $(\forall x,\ P(x))$ is $(\exists x,\ \lnot P(x))$ and the negation of $(\exists x,\ P(x))$ is $(\forall x,\ \lnot P(x))$, and that, for every propositions $P$ and $Q$, the negation of $P\land Q$ is $(\lnot P)\lor(\lnot Q)$. Thus, the negation of $$\forall V,\ \exists W,\ \forall x\in W,\ \forall t\geqslant0,\ P(x,t)\land Q(x,t),$$ is the proposition $$\exists V,\ \forall W,\ \exists x\in W,\ \exists t\geqslant0,\ (\lnot P(x,t))\lor(\lnot Q(x,t)).$$