For any collections $C$ and $D$ of random variables, if $D$ is uniformly integrable and $C\subseteq D$, then $C$ is uniformly integrable.
To see this, recall that $D$ is uniformly integrable if and only if $S(x,D)\to0$ when $x\to+\infty$, where $$ S(x,D)=\sup\\{\mathrm E(|X| ; |X|\geqslant x)\mid X\in D\\}. $$ Now, if $C\subseteq D$, then $S(x,C)\leqslant S(x,D)$ for every $x$, hence the conclusion follows.
Thus, the contraposition holds: if $C$ is not uniformly integrable and $C\subseteq D$, then $D$ is not uniformly integrable.