It is not too difficult to derive the coefficients from scratch. The general idea is outlined here.
Up to order 5, the result is:
**n=3:** $$\begin{array}{cc} x_i & w_i\\\\\hline 0 & \frac{8}{75}\\\ \pm \sqrt{\frac{5}7} & \frac{7}{25} \end{array}$$
**n=4:** $$\begin{array}{cc} x_i & w_i\\\\\hline \pm\frac{1}{3} \sqrt{5-2 \sqrt{\frac{10}{7}}} & \frac{1}{300} \left(50-\sqrt{70}\right)\\\ \pm\frac{1}{3} \sqrt{5+2 \sqrt{\frac{10}{7}}} & \frac{1}{300} \left(50+\sqrt{70}\right) \end{array}$$
**n=5:** $$\begin{array}{cc} x_i & w_i\\\\\hline 0 & \frac{128}{3675}\\\ \pm\sqrt{\frac{1}{33} \left(21-2 \sqrt{14}\right)} & \frac{3 \left(258+\sqrt{14}\right)}{4900}\\\ \pm\sqrt{\frac{1}{33} \left(21+2 \sqrt{14}\right)} & \frac{3 \left(258-\sqrt{14}\right)}{4900} \end{array}$$