We need to prove that $$(a^2+b^2)^2\geq\sum_{cyc}(2a^2b^2-a^4)$$ or $$c^4-2(a^2+b^2)c^2+2(a^4+b^4)\geq0$$ or $$(c^2-a^2-b^2)^2+(a^2-b^2)^2\geq0.$$
Yes, you can prove this inequality by the dividing.
Indeed, if $c^2(a^2+b^2)=0$ then the inequality is obvious.
Let $c^2(a^2+b^2)\
eq0$.
Thus, by AM-GM and Cauchy-Schwarz $$\frac{c^4+2(a^4+b^4)}{c^2(a^2+b^2)}=\frac{c^2}{a^2+b^2}+\frac{2(a^4+b^4)}{c^2(a^2+b^2}\geq$$ $$\geq2\sqrt{\frac{c^2}{a^2+b^2}\cdot\frac{2(a^4+b^4)}{c^2(a^2+b^2)}}=2\sqrt{\frac{2(a^4+b^4)}{(a^2+b^2)^2}}=$$ $$=2\sqrt{\frac{(1+1)(a^4+b^4)}{(a^2+b^2)^2}}\geq2\sqrt{\frac{(a^2+b^2)^2}{(a^2+b^2)^2}}=2.$$