$$\sin 3\alpha = 2\sin\alpha$$
\begin{align} \sin(3\alpha) &= \sin(2\alpha + \alpha) \\\ &= \sin(2\alpha) \cos \alpha + \cos(2 \alpha) \sin \alpha \\\ &= (2 \sin \alpha \cos \alpha) \cos \alpha \+ (\cos^2 \alpha -\sin^2 \alpha) \sin \alpha \\\ &= 2\sin \alpha \cos^2\alpha + \cos^2\alpha \sin \alpha - \sin^3 \alpha \\\ &= 3\sin \alpha \cos^2 \alpha -\sin^3 \alpha \\\ &= 3 \sin \alpha(1 - \sin^2 \alpha) - \sin^3 \alpha \\\ &= 3\sin \alpha - 4 \sin^3 \alpha \end{align}
\begin{align} \sin 3\alpha &= 2\sin\alpha \\\ 3\sin \alpha - 4 \sin^3 \alpha &= 2\sin \alpha \\\ \sin \alpha - 4\sin^3 \alpha &= 0 \\\ \sin \alpha (1 - 4 \sin^2 \alpha) &= 0 \\\ \hline \sin \alpha &= 0 \\\ \sin^2 \alpha &= \dfrac 14 \\\ \hline \sin \alpha &\in \left\\{-\dfrac 12, 0, \dfrac 12 \right\\} \end{align}