Hint. By the inclusion-exclusion principle we have $$(2N)!-\binom{M}{1}\cdot\underbrace{2\binom{2N-1}{1}1!(2N-2)!}_{\text{at least one of the $M$ couples together}}+\binom{M}{2}\cdot\underbrace{2^2\binom{2N-2}{2}2!(2N-4)!}_{\text{at least two of the $M$ couples together}}-\dots$$ Can you take it from here?