Artificial intelligent assistant

A (probably trivial) induction problem: $\sum_2^nk^{-2}\lt1$ So I'm a bit stuck on the following problem I'm attempting to solve. Essentially, I'm required to prove that $\frac{1}{2^2}+\frac{1}{3^2}+\cdots+\frac{1}{n^2} < 1$ for all $n$. I've been toiling with some algebraic gymnastics for a while now, but I can't seem to get the proof right. Proving it using calculus isn't a problem, but I'm struggling hither.

As often happens with induction proofs, the easiest approach to proving this statement (which doesn't seem inducable at all - after all, how does knowing the sum for $n$ is less than $1$ tell you anything about the sum for $n+1$?) via induction is to transform it into a stronger one: $$\mathrm{For\ all\ } n\geq2, \frac{1}{2^2}+\frac{1}{3^2}+\ldots+\frac{1}{n^2} \lt 1-\frac{1}{n}.$$

Now, the answer becomes a matter of simple algebra:

$$\sum_{i=2}^{n+1} \frac{1}{i^2} = \sum_{i=2}^{n} \frac{1}{i^2} +\frac{1}{(n+1)^2}\lt 1-\frac{1}{n}+\frac{1}{(n+1)^2}\lt 1-\frac{1}{n}+\frac{1}{n(n+1)} = 1-\frac{1}{n+1}.$$

xcX3v84RxoQ-4GxG32940ukFUIEgYdPy 28c3c25611a1464de1efba5851bedad0