if the $R$-module $M$ is simple then for $a \in R$ we have $aM=0$ or $aM=M$. suppose $aM \
e 0$ then $aM=M$. if $a \
e 0$ is nilpotent, then $\exists n \gt 1$ such that $a^n=0$. then $$ a^nM=0 $$ this requires $$ a(a^{n-1}M) =0 $$ but now $a^{n-1}M=M \Rightarrow aM=0 \Rightarrow a^{n-1}M=0$, a contradiction.
so $a^{n-1}M=0$. if $n-1 \gt 1$ we may repeat the argument until we arrive at $a^1M =0$