Consider, for instance, $\frac1z$, whose domain is $\mathbb C\setminus\\{0\\}$. Then the loop $\Gamma_1$ is homotopically null (that is, it is homotopic to a _constant_ loop) in $\mathbb C\setminus\\{0\\}$, and therefore $\int_{\Gamma_1}\frac{\mathrm dz}z=0$. So$$\int_{\Gamma_1}\frac{\mathrm dz}{(z-1)^2}+\int_{\Gamma_1}-\frac{\mathrm dz}{z-1}+\int_{\Gamma_1}\frac{\mathrm dz}z=\int_{\Gamma_1}\frac{\mathrm dz}{(z-1)^2}+\int_{\Gamma_1}-\frac{\mathrm dz}{z-1}.$$