$A\mathbf x = \lambda\mathbf x \implies cA\mathbf x =c\lambda \mathbf x$
Note that $kI_n \mathbf x = k\mathbf x$ so add this to the above equation to get:
$cA\mathbf x + kI_n \mathbf x = c\lambda \mathbf x + k\mathbf x \iff (cA + kI_n) \mathbf x = (c\lambda + k)\mathbf x$
Therefore, $c\lambda +k$ is an eigenvalue of $cA + kI_n$ corresponding to eigenvector $\mathbf x$. $\square$