On the second quadrant $\;\frac\pi2
$$\sin x>0\,,\,\,\,\cos x<0\implies \sqrt{8\sin^2x\cos^2x}=\sqrt8\sin x(-\cos x)=-2\sqrt2\sin x\cos x\implies$$
$$-2\sqrt2\int\limits_{\frac\pi2}^\pi\sin x\cos x\;dx=\left.-2\sqrt2\frac12\sin^2x\right|_{-\frac\pi2}^\pi=-\sqrt2\left(\sin\pi-\sin\frac\pi2\right)=\sqrt2$$