Artificial intelligent assistant

For a given Hilbert space find a tight frame with bound A For a given Hilbert space and $A>0$ find a tight frame with bound A. I know that an ortho-basis is a tight frame with $A=1$. Can I extend this to any $A>0$ by just scaling the ortho-basis?

Yes, you can. If $\\{e_\alpha:\alpha\in I\\}$ is an orthonormal basis, then $\\{\lambda e_\alpha:\alpha\in I\\}$ is a tight frame with constant $A=\lambda^2$: $$ \sum_\alpha |\langle v,\lambda e_\alpha \rangle|^2 = \lambda^2\sum_\alpha |\langle v, e_\alpha \rangle|^2 = \lambda^2\|v\|^2 $$

xcX3v84RxoQ-4GxG32940ukFUIEgYdPy 258bceef9bfe9c0787f0eabadab351ea