Let $w,x,y,z \in \mathbb{Z}$ such that:
$x,y,z \in \\{0,1\\}$
$x+y+z=1$
$w=-3x+7y+19z$
Then $w$ will be exactly one out of $-3,7,19$.
Let $w,x,y,z \in \mathbb{Z}$ such that:
$x,y,z \in \\{0,1\\}$
$x+y+z=1$
$w=-3x+7y+19z$
Then $w$ will be exactly one out of $-3,7,19$.