You can write every number $n$ in the form $a^2+b^2-c^2$. Just pick $a$ so that $n-a^2$ is odd and then solve
$$\begin{align} b+c&=n-a^2\\\ b-c&=1 \end{align}$$
for $b$ and $c$:
$$\begin{align} b&={n-a^2+1\over2}\\\ c&={n-a^2-1\over2} \end{align}$$
You can write every number $n$ in the form $a^2+b^2-c^2$. Just pick $a$ so that $n-a^2$ is odd and then solve
$$\begin{align} b+c&=n-a^2\\\ b-c&=1 \end{align}$$
for $b$ and $c$:
$$\begin{align} b&={n-a^2+1\over2}\\\ c&={n-a^2-1\over2} \end{align}$$