From:
$$x^2+y^2=4-z$$
we obtain:
$$\rho^2 \sin^2\phi=4-\rho \cos \phi\implies\rho^2 \sin^2\phi+\rho \cos \phi-4=0$$
and thus
$$\rho=\frac{-cos \phi\pm \sqrt{\cos^2 \phi+16\sin^2 \phi}}{2\sin^2 \phi}\implies \rho=\frac{-cos \phi+ \sqrt{\cos^2 \phi+16\sin^2 \phi}}{2\sin^2 \phi}>0$$
> $$ \iiint \; dV = \int_0^{2\pi} \int_{0}^{\pi/2}\int_0^{\frac{-cos \phi+ \sqrt{\cos^2 \phi+16\sin^2 \phi}}{2\sin^2 \phi}}\rho^2 \sin \phi \; d\rho d \phi d \theta $$