$$\frac{\sqrt {1 + a_n} - 1}{a_n} =\frac{\sqrt {1 + a_n} - 1}{a_n}\cdot\frac{\sqrt {1 + a_n} +1}{\sqrt {1 + a_n} +1} =\frac1{\sqrt {1 + a_n} + 1}$$
$$\frac{\sqrt {1 + a_n} - 1}{a_n} =\frac{\sqrt {1 + a_n} - 1}{a_n}\cdot\frac{\sqrt {1 + a_n} +1}{\sqrt {1 + a_n} +1} =\frac1{\sqrt {1 + a_n} + 1}$$