Let $P=U(-\theta(B))|A|U(\theta(B))=U(\theta(B))^tAU(\theta(B))$ and $Q=|B|$ then
$AB=U(\theta(A))|A|U(\theta(B))|B|=U(\theta(A))U(\theta(B))PQ=U(\theta(A)+\theta(B))PQ$.
Hence, $PQ=U(-\theta(A)-\theta(B))U(\theta(AB))|AB|=U(\theta(AB)-\theta(A)-\theta(B))|AB|=\theta(PQ)|PQ|$.
By the uniqueness of the polar decomposition of an invertible matrix, we get $\theta(PQ)=\theta(AB)-\theta(A)-\theta(B)$.
Since $P$ and $Q$ are positive definite then $|\theta(PQ)|<\pi$ and the result follows.