Let $A \subseteq V$ such that $h(X) = \frac{|E(A, B)|}{min(|A|, |B|)}$, $B=V - A$. We have $ | \partial A | \leq |E(A, B)|$. Since $A \cup B = V, A \cap B = \emptyset$, $max(|A|, |B|) \geq n/2$. Therefore $$ c/2 \leq \frac{n|\partial A|}{2|B| |A|} \leq \frac{n|E(A, B)|}{2|B| |A|} \\\ = \frac{n|E(A, B)|}{2 max(|B|, |A|)min(|B|, |A|)} \leq \frac{|E(A, B)|}{min(|B|, |A|)} = h(X). $$