When a surface element $d\omega$ at a point $P$ in three-space is projected orthogonally into all possible directions then the average area of the image is $\rho\thinspace d\omega$ where $\rho$ is a universal constant. To determine the value of $\rho$ we argue as follows: The unit sphere $S^2$ has a surface area of $4\pi$, and the area of its projection is $2\pi$ in all directions (note that the "shadow" is doubly covered); whence also the average area of the projection is $2\pi$. So $\rho$ must be ${1\over2}$. What we have found out is valid for any surface element $d\omega$ of your ellipsoid $E$. It follows that the average area of the shadow of $E$ is equal to $\omega(E)/4$, where $\omega(E)$ is the total surface area of $E$ and we have taken into account that the shadow is covered twice. The value so obtained can be expressed as an elliptic integral in terms of $a$, $b$, $c$.