You may just use the Dirichlet test: $$ \frac1n \geq \frac1{n+1}, $$ $$ \frac1n \to 0, \, \text{as}\,\, n \to +\infty, $$ $$ \left|\sum_1^n (-1)^{k-1}\right| \leq 1 $$ ensuring the **convergence** of the series $$ \sum_1^\infty \frac{(-1)^{n-1}}{n}. $$