If $x=1/(2n\pi)$ where $n$ is an integer, then $$x^{\cos(1/x)}=x\to0\quad\hbox{as $n\to\infty$}.$$ If $x=1/((2n+1)\pi)$ then $$x^{\cos(1/x)}=x^{-1}\to\infty\quad\hbox{as $n\to\infty$}.$$ So for various (positive) values of $x$, your expression oscillates between $0$ and $\infty$.