Argument of a product is equal to the sum of arguments, argument of a ratio is equal to the difference of arguments.
Angle of 2 vectors is equal to the difference of arguments of their affices: the last one minus the first one.
Therefore $$\arg(z')= \arg\left(\frac{i(z-2)}{z-2i}\right)=\arg(i)+\arg(z-2)-\arg(z-2i).$$ Since $$z-2=z_M-z_A=z_{\small{\vec{AM}}}\quad \text{and}\quad z-2i=z_M-z_B=z_{\small{\vec{BM}}},$$ we have $$\arg(z')=\frac{\pi}{2}+(\vec{BM}\;;\vec{AM}) +2k\pi,\;k\in\mathbb{Z}.$$