First note that $1+2+3+4+5 = 15$. So your series becomes:
\begin{align*} \frac{1}{6}\cdot 15 + \frac{1}{6^2} \cdot (6\cdot 5+15)+ \frac{1}{6^3}(12\cdot 5+15)+\cdots &= \sum_{k=1}^\infty \frac{1}{6^k}(6\cdot(k-1)\cdot 5+15)\\\ &=30\sum_{k=1}^\infty \frac{(k-1)}{6^k} + 15\sum_{k=1}^\infty\frac{1}{6^k}\\\ &=5\sum_{k=0}^\infty \frac{k}{6^k}+\frac{15}{6}\sum_{k=0}^\infty \frac{1}{6^k}. \end{align*}
The last term is just a geometric series. The sum of $\frac{k}{6^k}$ can be found in the following way, assuming you know it converges. Let $S=\sum_{k=0}^\infty \frac{k}{6^k}=0+\frac{1}{6}\frac{2}{6^2}+\frac{3}{6^3}+\cdots$. Then $\frac{1}{6}S=0+\frac{1}{6^2}+\frac{2}{6^3}+\frac{3}{6^4}+\cdots$, so we have $S-\frac{1}{6}S=\frac{1}{6}+\frac{1}{6^2}+\frac{1}{6^3}+\cdots = \frac{1}{6}\sum_{k=0}^\infty \frac{1}{6^k}.$