Your answer is correct.
$$\mbox{October } 24-31 \mbox{ is } 7 \mbox{ days}\ \ \ \ \ \ \ \ \ \ \ \ \ \mbox{Total days in }1987 \mbox{ is }68 \mbox{ days} $$
$$\mbox{November } 30 \mbox{ days}\ \ \ \ \ \ \ \ \ \ \ \ \ \mbox{Total days in }1988 \mbox{ is }366 \mbox{ days} $$
$$\mbox{December } 31 \mbox{ days}\ \ \ \ \ \ \ \ \ \ \ \ \ \mbox{Total days in }1989 \mbox{ is }365 \mbox{ days} $$
$$\mbox{October } 1-7 \mbox{ is } 7 \mbox{ days}\ \ \ \ \ \ \ \ \ \ \ \ \ \mbox{Total days in }1990 \mbox{ is }7 \mbox{ days} $$
So, Number of interest days $=68+366+365=806$
Number of days from $1987$ to $1990$ is $=365+366+365+365=1461$
So, $I=1,000,000(0.17)\left(\dfrac{806}{1461}\right)=93,785.079$