A famous theorem of Archimedes says that under the parametrization $$ (\theta, z) \mapsto(\sqrt{1 - z^{2}} \cos\theta, \sqrt{1 - z^{2}} \sin\theta, z),\qquad 0 \leq \theta \leq 2\pi,\quad -1 \leq z \leq 1, $$ the area element of the round sphere is $d\theta \times dz$. This gives you two natural ways to proceed:
* In the standard spherical parametrization, $z = \sin\phi$ and $\sqrt{1 - z^{2}} = \cos\phi$, the spherical measure is $d\theta \times \cos\phi\, d\phi$;
* In the parametrization $z = 2\phi/\pi$, the spherical area element is $(2/\pi)\, d\theta \times d\phi$.